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Résumé. La gestion des prises accidentelles d’espèces protégées dans les engins de pêche
est un enjeu majeur pour atteindre les objectifs de la Stratégie de l’Union Européenne en
faveur de la biodiversité à horizon 2030. Les statistiques des prélèvements réalisés ne sont,
en général, pas fiables car non-systématiques, ou issues déchantillons non-représentatifs. Les
données de prélèvements concernant les espèces protégées sont donc très parcellaires et bi-
aisées, ce qui complique l’évaluation de la soutenabilité des activités humaines. Toutes les
espèces de cétacés sont protégées au niveau national et européen ; néanmoins celles-ci sont
aussi impactées par les captures accidentelles. C’est le cas du dauphin commun (Delphinus
delphis) dans le Golfe de Gascogne, dont les manquements en matière de protection valent
aujourd’hui à la France une mise en demeure de la Commission Européenne et à l’Etat un
arrêté de fermeture des pêcheries à risque pendant un mois durant l’hiver 2024 ordonnée par
le Conseil d’Etat.

Un outil important pour gérer les impacts des pêcheries est le calcul de points de référence
limites, aussi appelé seuils de prélèvements au-delà desquels la viabilité à long terme des popu-
lations impactées n’est plus garantie. Le calcul de tels seuils repose sur une méthodologie mise
en place par la Commission Baleinière Internationale (CBI) au cours des années 1990 et qui
reposent sur la simulation numérique de populations virtuelles soumises à des prélèvements
dont l’ampleur est déterminée par une règle de gestion. Ces règles de gestion pour calculer
les seuils sont évaluées dans un panel de scénarios pour évaluer la robustesse de ceux-ci à
divers cas de figures dont des biais dans les données (sous-estimation des prélèvements par
sous-déclaration, etc.). Deux règles sont actuellement utilisées : le PBR (”Potentiel Bio-
logical Removal”) tel que défini dans la loi états-unienne sur la protection des mammifères
marins ; et le RLA (”Removals Limit Algorithm”) inspiré des travaux de la CBI.
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Nous avons développé un modèle stochastique dit de ”sur-production”, modèle couram-
ment utilisé en halieutique pour calculer des points de références ou des quotas pour des
espèces exploitées. Ce modèle paramétrique reste simple (4 paramètres à estimer) et est
informé par les prélèvements et l’abondance estimées d’une espèce pour calculer un taux de
prélèvement (en pourcentage de l’abondance) compatible avec la viabilité à long-terme d’une
population. Néanmoins, il fait une hypothèse restrictive de stationnarité des prélèvements qui
n’est pas réaliste : la gestion doit précisément amener à des taux non-stationnaires puisqu’un
objectif de restauration de la biodiversité est de minimiser au cours de temps les captures
accidentelles. Nous proposons une approche de vraisemblance pondérée pour s’accommoder
de cette non-stationnarité. Au travers d’une étude de simulations, nous montrons com-
ment notre modèle conduit à une règle de gestion compatible avec les ambitions actuelles de
conservation, notamment celle de minimiser l’impact des activités humaines sur les espèces
protégées, dauphins inclus.

Mots-clés. évaluation de stratégie de gestion, Stan, captures accidentelles, cétacés,
Bayesien

Abstract. Managing human activities, which can result in additional mortality on many
marine Protected, Endangered or Threatened Species (PETS) is key to reach the ambitious
set out by the EU 2030 Biodiversity Strategy. By-catch, the undesirable and non-intentional
catch of non-target species in marine fisheries, is one of the main causes of mortality of marine
mammals (which are often PETS) worldwide. Data on anthropogenic removals (including by-
catch) of PETS (including marine mammals) are often unreliable because of, among others,
inadequate sampling design, lack of enforcement, non-representative samples and undereport-
ing (due for example to social desirability bias). All cetacean species benefit from some legal
protection whether at the national or international level. The common dolphin (Delphinus
delphis) in the Bay of Biscay epitomized the current challenges : the failure to enforce its
strict protection earned (i) France an infringement procedure from the European Commission
; and (ii) the French Government the ordnance from the highest administrative court (‘The
Conseil d’Etat’) of a one month spatio-temporal closure of all high-risk fisheries operating in
the Bay of Biscay in the winter 2024.

Managing by-catch hinges on the computation of so-called biological reference points, also
known as removals limits/thresholds : these represent an upper limit to the number of ani-
mals that can be removed from a population without compromising the long-term viability of
said population with unacceptably high probability. Methods to compute removals limits for
cetaceans originate from scientific work carried out in the 1990s by the International Whaling
Commission (IWC) whereby computer simulations are harnessed to investigate the likelihood
outcomes of different management schemes. The framework outlined by the IWC used so-
called ‘harvest control rule’ (or just control rule) that take data from current monitoring as
inputs to output a threshold (or a quota in case of a commercial species). Importantly, the
framework allows to assess the effect of knowledge gaps and data biases to devise control
rules that are robust against these. Two rules are commonly in use : the Potential Biological
Removal (PBR) from the US Marine Mammal Protection Act ; and the Removals Limit Algo-

2



rithm, a child of the Catch Limit Algorithm devised to set quotas on the hunt of large whales.

We developed a stochastic surplus production model, a kind of parameter-lean model
common in fishery sciences, and proposed a new control rule derived from this 4-parameters
model. The model assumes (i) a simple proportional relationship between true abundance
and removals, and (ii) stationarity (time-invariance) in removal rate. This assumption is
untenable if management is to be effective as the very purpose managing anthropogenic
removals of PETS is to minimize them. To preserve parameter-leaness, we resorted to a
weighted-likehood approach for estimation (in a Bayesian framework) with time-dependent
weights chosen such that older removal data are progressively and smoothly down-weighted.
Using simulations, we benchmarked our new control rule relying on the stochastic surplus
production model in a case study which revealed the competitiveness of the new rule to meet
current conservation policy desiderata such as minimizing removals over time.

Keywords. management strategy evaluation, Stan, by-catch, cetaceans, Bayesian
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1 Texte long

Introduction

Human activities in the oceans are increasing and can result in additional mortality on many
marine Protected, Endangered or Threatened Species (PETS). By-catch, the undesirable and
non-intentional catch of non-target species in marine fisheries, is one of the main causes of
mortality of marine mammals (which are often PETS) worldwide. When quantitative con-
servation objectives and management goals are clearly defined, computer-based procedures
can be used to explore likely population dynamics under different management scenarios
and estimate the levels of anthropogenic removals, including by-catch, that marine mammal
populations may withstand. Two control rules for setting removals limits are the Potential
Biological Removal (PBR; Wade 1998) established under the US Marine Mammal Protection
Act and the Removals Limit Algorithm (RLA; Cooke 1999) inspired from the Catch Limit
Algorithm developed under the Revised Management Procedure of the International Whaling
Commission (IWC). Both rules were tested and developped in procedures originally labeled
’simulation trials’ and nowadays called Management Strategy Evaluations (MSE).

A management strategy is an agreed-upon set of rules for determining thresholds beyond
which a conservation objective runs the risk of not being met with unacceptably high proba-
bility. This strategy defines management objectives in the form of thresholds that managers
can monitor from available data, with the management objectives that these thresholds are
not exceeded. MSE needs generative models that can generate (synthetic) data that are
similar to observed, and crucially, currently available data. These models need to be more
than simple curve-fitting devices and should be infused with ecological realism to reproduce
and simulate the dynamics of an ecological system such as a population subjected to anthro-
pogenic removals on top of natural processes (e.g. density dependence). Scientists can then
evaluate the performance of management actions in ’what-if’, or counterfactual, scenarios to
set efficient management objectives. Importantly, the latter will be gauged against observable
and available data (e.g. abundance and by-catch estimates, along with their uncertainties)
only and not from unknown quantities (e.g. true abundance). Uncertainties in the underly-
ing model and potential biases and uncertainty in the observed data must be considered in
order to ensure robust management.

MSE requires in practice several components, including:
(1) one or several unambiguous quantitative conservation objective;
(2) a data simulator (or operating model) to emulate population dynamics and the effects of
anthropogenic activities on this population;
(3) a control rule, whose computation accounts for the expected quantity and quality of
observable data; to set a removals limit beyond which the impact of human activities runs
the risk of failing the conservation objective(s) in (1); and
(4) performance metrics, necessarily context-dependent and policy-relevant, reflecting the
trade-off between the potentially many conservation objectives defined previously.
For each management strategy, population dynamics are simulated, human activities have
impacts, a control rule is applied: performance metrics are monitored and ultimately assessed
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with respect to the conservation objective. Items (1) and (4) should be agreed upon by
all stakeholders or taken from national or international law. Items (2) and (3) are under
the remit of scientists, whose task is to test a large panel of realistic scenarios to buffer the
management strategy against uncertainties and potential biases in the available data. MSE is
computer intensive and needs tuning via simulations. Running a large number of simulations
has become mundane yet coding an adequate data simulator may present a daunting task.
To minimize duplication of effort and to enhance reproducibility we wrote the RLA package
for statistical software R for ecologists and managers (Genu et al. 2021). The package
allows to carry MSE with the two control rules: Potential Biological Removal (PBR) and the
Removals Limit Algorithm (RLA). We added a new one: Anthropogenic Removals Threshold
or, simply, ART.

Material and Methods

Notation
Notations are summarized in Table 1. Let logN (location, scale) denotes the log-normal
distribution of parameters location and scale. The ̂ notation flags a point estimate of a
parameter (e.g. a quantile from a posterior distribution).

Name Type Meaning
K Integer Carrying capacity (same unit as Nt, N

obs
t or Rt)

Nt Integer True abundance (in number of individuals) at time t
Nobs

t Integer Observed abundance (in number of individuals) at time t
cvt Positive real Coefficient of variation associated with Nobs

t

Rt Integer Removals (in number of individuals) at time t
Dt Positive real Depletion at time t: ratio of Nt over K
ρ Positive real Removal rate
r∗ Positive real Population growth rate at the MNPL
r Positive real Current population growth rate

MNP Positive real
Maximum Net Productivity:
the maximum possible per capita rate of increase per year

MNPL Proportion Maximum Net Productivity Level
z Positive real Shape parameter of the Generalized Logistic Population Growth model
rmax Positive real Maximum theoretical or estimated productivity rate; related to MNP
FR Proportion Recovery factor
Nmin Integer Minimum population estimate (Wade 1998)
IPL Proportion Internal Protection Level; a fraction of K
wt Positive real weight for the likelihood (Eq. 14)
cvσ Positive real Coefficient of variation associated with environmental stochasticity
εt, σ Positive real Environmental stochasticity

Table 1: Notations.
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Potential Biological Removal

The calculation of PBR is model-free:

PBR = Nmin
1

2
rmaxFR,

Nmin is an estimate of minimum population size, 1
2
rmax one half of the maximum theo-

retical net productivity rate, and FR a recovery factor between 0.1 and 1 (Wade 1998). The
computation of PBR does not require data on removals.

Removals Limit Algorithm
The other harvest control rule currently in use is the Removals Limit Algorithm (RLA). Its
computation requires both a time-series of abundance/biomass estimates (whereas PBR only
requires one such estimate) and a time-series of removals (whereas PBR requires none). RLA
is a variant of the Catch Limit Algorithm for baleen whales (Cooke 1999):

Nt+1 = Nt + rNt

(
1−

(
Nt

N0

)2
)

−Rt, (1)

where Nt and Rt are respectively the abundance/biomass and removals at time t. The
computation of the RLA control rule for setting a removals limit (as a fraction of the best
available abundance estimate) is:

removals limit = r ×max (0, DT − IPL) , (2)

where T is the current year, DT current depletion (that is, DT = NT

K
, K being the carrying

capacity) and IPL (Internal Protection Level) the depletion level below which the limit is set
to 0. Both r and DT are estimated from the model defined by Eq. 1 in a Bayesian framework
and removals limit is computed from the joint posterior distribution of (r, DT ). A point
estimate is used in practice by selecting a quantile of the posterior distribution to account
for uncertainty.

Candidate Control Rules
The PBR control rule takes a value for rmax as an input while the RLA control rule uses a
posterior distribution of r (from the model defined by Eq. 1). For most species, both rmax

or r are unknown: a default value can be used for PBR, or r needs to be estimated from a
prior and data. This knowledge gap may be exploited to argue against the use of either of
these rules using uncertainty distortion strategies (Schweder 2000; Rayner 2012). Devising
a new rule to set a removals limit that does not directly hinge on knowledge of this input
is desirable to (i) avoid any strategic mis-representation of uncertainty (see Rayner 2012);
and (ii) diversify options for discussions during the policy process. We developed candidate
control rules based on the same data requirements as the RLA, namely a time-series of
removals and at least one estimate of abundance that are fed into a statistical model. The
statistical model is, however, different in how it incorporates the removals data. In Eq. 1,
removals are treated as a known covariate. Below, we develop a stochastic model for removals
directly.
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Development of a stochastic Surplus Production Model
Operating models for PETS are often based on Surplus Production Models (SPM) which are
standard models of population dynamics in situations of strong uncertainty and low infor-
mation. SPMs seek to encompass important population processes governing the dynamics of
abundance change over time:

next abundance = previous abundance+recruitment+growth−natural mortality−anthropogenic removals

Density-dependence is taken into account (Pella & Tomlison, 1969), assuming a first-order
Markovian process on abundance:

Nt+1 = Nt + r∗
(
z + 1

z

)
Nt

(
1−

(
Nt

K

)z)
−Rt (3)

Setting z = 1 gives the Schaefer model: Nt and Rt are respectively the abundance/biomass
and removals at time t, K the carrying capacity and r∗ the growth rate at the Maximum
Net Productivity Level (MNPL; r∗ is also known as the Maximum Sustainable Yield Rate).
Incorporating environmental variability (the so-called process noise εt) in a multiplicative
way in Eq.3 yields:

Nt+1 =

{
Nt + r∗

(
z + 1

z

)
Nt

(
1−

(
Nt

K

)z)
−Rt

}
εt. (4)

where εt is assumed to be unbiased (E [εt] = 1) and homoskedastic (V [εt] = σ2).Assuming
a simple relationship between removals Rt and abundance Nt:

Rt = ρNt (5)

where ρ ∈ ]0, 1[ is a time-invariant removal rate (Bousquet et al. 2008; Bordet & Rivest
2014), the removal process becomes:

Rt+1 =

{
Rt +

z + 1

z
r∗Rt

(
1−

(
Rt

Kρ

)z)
− ρRt)

}
εt (6)

The set of parameters in Eq. 6 is θ = {K, σ, ρ, r∗}. Parameter z is usually fixed rather
than estimated. Setting z = 2.39 corresponds to a MNPL of 60% of K as customarily
assumed for marine mammals. Eq. 5 is a simplifying assumption that allows to link the
abundance and removal processes. Stochasticity is introduced in Eq. 6 for estimating a
removal rate from data, meaning that removals are used as an index of abundance.

Reparametrization
Following Bordet & Rivest (2014), let

Zt =
Nt

K

(
r∗(z + 1)

z − ρz + r∗ (z + 1)

)1

z
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which is well defined for z − ρz + r∗(1 + z) > 0, that is

ρ < 1 + r∗ z+1
z
.

With z > 0 this assumption is not restrictive since 0 < ρ < 1. Eq. 4 and 6 can be
re-arranged:

Zt+1 =

(
1− ρ+ r∗

z + 1

z

)
Zt (1− Zz

t ) εt,

Rt+1 =

(
1− ρ+ r∗

z + 1

z

)
Rt (1− {D(θ)Rt}z) εt

with Zt = D(θ)Rt and

D(θ) =
1

Kρ

(
r∗(z + 1)

z − ρz + r∗(z + 1)

)1

z
.

Positive removals imply Rt ≤ 1
D(θ)

. To simplify notations and to adopt a more conven-
tional Markovian writing:

Rt = g(Rt−1, θ)εt (7)

where g, which is neither linear nor log-linear, is:

g(Rt−1, θ) =

(
1− ρ+ r∗

z + 1

z

)
Rt−1 (1− {D(θ)Rt−1}z) . (8)

A sequence of observed removals (R0, . . . , RT ) informs on θ via a likelihood function:

ℓ(R0, . . . , RT |θ) = ℓ({Rt}|θ) =
T∏
t=1

f(Rt|Rt−1, θ) (9)

where each conditional density function f(Rt|Rt−1, θ) is determined by a choice on the
distribution of εt. Although the considered quantities are discrete and bounded in our setting,
a log-normal assumption is a customary choice to model environmental stochasticity:

εt ∼ logN
(
−σ2

2
, σ

)
,

which implies both E [εt|Ft−1] = 1 and V [εt|Ft−1] = σ2. Accordingly, given Eq. 7, the
conditional density of Rt in Eq. 9 becomes, for t > 1:

f(Rt|Rt−1, θ) =
1√

2πσRt

exp

(
− 1

σ2
exp

{
logRt − log g(Rt−1, θ) +

σ2

2

}2
)
. (10)
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where g(Rt−1, θ) is given by Eq. 8.
One of the parameters in θ, K needs data on absolute abundance. Denote I the years for
which an abundance estimate Nobs

t , observed with noise, is available. We denote J the years
for which removals are observed, with I ⊂ J . The true abundance in year t ∈ I is

Nt =
Rt

ρ
.

Assuming a log-normal distribution for observation errors ϵ′t, ∀t ∈ I:

Nobs
t |Rt, θ, τt = Nt exp(ϵ

′
t) with ϵ′t ∼ logN

(
−τ 2t

2
, τt

)
,

where τt =
√

log (1 + cv2t ) and cvt is the coefficient of variation associated with the
estimated abundance Nobs

t . The observation model for each observed abundance datum is:

Nobs
t |Rt, θ, τt ∼ logN

(
logRt − log ρ− τ 2t

2
, τt

)
(11)

The joint likelihood of the observed abundances and removals data is

ℓθ

({
Nobs

t

}
t∈I , {Rt}t∈J

)
= ℓ

({
Nobs

t

}
t∈I | {Rt}t∈J , θ

)
×
∏
t∈J

ℓ ({Rt} , θ) (12)

where ℓ ({Rt} , θ) is given by Eq. 9. Under the assumption that abundances are observed
independently from removals and given Eq. (11), one has:

ℓ
({

Nobs
t

}
t∈I | {Rt}t∈J , θ

)
=
∏
t∈I

1√
2πNobs

t τt
exp

(
−
(
log

(
ρNobs

t

Rt

)
+

τ 2t
2

)2
1

2τ 2t

)
. (13)

We wrote the joint likelihood (Eq. 12, Ouzoulias et al. 2024) in programming language
Stan (Carpenter et al. 2017).

Initial conditions
For practical reasons, the initial depletion D0 at the start of the time-series of removals,
instead of K, is estimated: D0 = N0

K
. Initial abundance N0 is typically unknown for PETS

and the first abundance estimate available may not even match the start of the observed
removals time-series. In that case, information on initial depletion D0 may be elicited from
expert knowledge or historical data, and given a prior distribution: it may be easier to elicit a
prior on depletion (a quantity expected to be bounded between 0 and 1) than on K directly.
In practice, K is deduced fromD0 and the first observed abundance estimate that is available.
The set of parameters to estimate is now: θ = {r∗, σ, ρ,D0}.

Anthropogenic Removals Threshold (ART)
The stochastic SPM assumes a crude proportionality between removals and abundance, and
stationarity in ρ, the removal rate, which is at odds with the very purpose of managing
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removals. If management is meant to be effective, it will take action to precisely change the
level of removals. By definition, management aims at changing ρ over time so the model
is clearly wrong once management is implemented. Before management is implemented,
stationarity is an assumption as there is typically little knowledge or data are too noisy to
test it. To obviate this issue while retaining a parsimonious model with 4 parameters, we
used a weighted likelihood approach to progressively down-weigh data extending the furthest
back in time (i.e., to consider that the policy relevance of statistical information provided
by each datum in a sample depends on how far back in time the datum was collected). The
likelihood ℓ({Rt}|θ) is replaced by

ℓw(η)({Rt}|θ) =
T∏
t=1

(f (Rt|Rt−1, θ))
wt(η) (14)

where the weights wt(η) provide a kernel-based representation of the score function

s(θ) = ∇θ ℓ({Rt}|θ).

The weights wt(η) should be a bounded differentiable non-negative function of t that may
depend on a parameter η which can be consistently estimated by η̂, such that

sup
Rt

|w(t, η̂)− c| t→∞−−−→
p

0 almost surely

where c is a positive constant. The following choice (Gaussian kernel):

wt(η) = exp

(
−(T − t)2

2η2

)
obeys these requirements (with c = 1). η was fixed instead of estimated so that data

older than 50 years contribute less than 0.05 to the likelihood during estimation (wt = 0.05
for (t − 50)). This choice (η = 20.4) is arbitrary but was found to work well in practice.
Capitalizing from the stochastic SPM (Eq. 14), we propose two candidate control rules (as
a fraction of the best available abundance estimate) which we call Anthropogenic Removals
Threshold (ART) to emphasize that the quantity derived from these control rules represents
a threshold beyond which conservation objectives run a high risk of not being met. The first
candidate is simply the posterior mean of the quantity:

candidate1 = ρ× FR (15)

where FR is a recovery factor chosen between 0.1 and 1 (as in the PBR control rule). This
rule adapts the historical removal rate and does not directly rely on an estimate of carrying
capacity or population growth rate as the RLA control rule (although both a carrying capacity
and a population growth rate are in θ). The second candidate takes stock of any decline in
abundance to negatively feedback on the removals limit:

candidate2 = ρ× FR ×min (1, exp (β)) (16)
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where β is the slope of a regression line through the abundance estimates (scaled by
the first estimate and then log-transformed) and estimated using a weakly-informative prior
(namely the ’skeptical’ prior of Cook et al. (2011)) that favours the hypothesis of no trend
over time. This candidate rule operationalizes the principle on non-deterioration whereby
populations or species in need of restoration (that is, that are depleted) should not be allowed
to deteriorate further. If no trend or a positive trend in abundance is evidenced, candidate2
is equivalent to candidate1. Both candidate1 and candidate2 can be computed for the same
data necessary to compute RLA, and their posterior mean approximated by the average over
a sample from the posterior distribution of θ.

(’Harvest’) Control rules
We tested 4 control rules for managing anthropogenic removals of PETS:

� the PBR rule of Wade (1998) with Nmin defined as the 20% quantile of a log-normally
distributed abundance estimate Nobs

T : PBR = Nmin
1
2
rmaxFR;

� the RLA rule, with RLA = Nobs
T × removals limit = Nobs

T × r ×max (0, DT − IPL);

� the candidate1 ART, with ART1 = Nobs
T × candidate1 = Nobs

T × ρ× FR; and

� the candidate2 ART, with ART2 = Nobs
T ×candidate2 = Nobs

T ×ρ×FR×min (1, exp (β)).

All rules need tuning. For PBR, ART1 and ART2, this process means the testing of differ-
ent values of FR to identify the minimum one that allows to reach the conservation objective.
For RLA, tuning is achieved by testing different quantiles of the posterior distribution of
Eq. 2. That quantile tuning was not carried out with ART1 or ART2 stemmed from the
typically tight posterior concentration observed when estimating ρ during the development
of the stochastic SPM. In contrast, posterior concentration does not occur because the log-
normal likelihood assumed for Eq. 1 when estimating removals limit is down-weighted by a

fixed factor
1

16
to limit the speed at which the management procedure responds to feedback

(Cooke 1999).

Simulations
The operating model used in population dynamics simulations was a stochastic and age-
disaggregated version of a generalized logistic model of population dynamics (Genu et al.
2021). Given initial conditions, biological parameters and removals, abundance data are gen-
erated at each time step. Life-history parameters of the the Harbour Porpoise (Phocoena
phocoena) in the North Sea were inputed to the operating model. A hundred (100) simula-
tions were carried out: for each a hypothetical population of harbour porpoises was depleted
with unmanaged anthropogenic removals for 50 years before implementing management pro-
cedures and specific control rules. A time-series of removals as long as 50 years is unusual in
general, but one is available for harbour porpoise in the North Sea. A distribution of initial
depletion levels was induced between 30% and 60%. Important biological inputs include the
Maximum Net Productivity (MNP) and MNPL, which are usually unknown in most cases.
To reflect that uncertainty, a range of plausible values for small cetaceans were considered.

Scenarios
We evaluated control rules on three scenarios: a base case scenario whereby unbiased but
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noisy data are assumed to be available and collected; and two so-called robustness trials. In
the first trial, estimates of abundance have a systematic bias resulting in an overestimation
by a factor 2. In the second, removals’ estimates were assumed to be biased downward,
resulting in an underestimation of true removals by a factor 2. The two robustness trials
were found to be the most challenging ones in a previous investigation (Genu et al. 2021).
The MSE is summarized on Figure 1. The conservation objective for ”long-term viability”
was defined as to restore or maintain population size to at least 60% of carrying capacity
(K) over a time horizon of 50 years with the probability of 0.9.

Biological parameters

• age-specific survival

• maturity ogive

• environmental
stochasticity

• etc.

Initial conditions

• depletion at t = 0

• seed

• etc.

OPERATING MODEL

Nt
−−−−−−−−−−−−−−→
density dependence Nt+1

Removals

Variability

True values

Estimated
removals

Estimated
abundance

Control Rule

• PBR

• RLA

• ART

Observed values

Inputs
Monitoring
Management

Figure 1: Simulation workflow. Schematic representation of the workflow for simulations.
Population dynamics (N denotes abundance) are simulated from biological parameters (life-
history data, true removal rate etc.). Monitoring allows to collect data but these data are
noisy: they always include observation noise and, depending on robustness trials, can be
biased. Data are used as inputs in control rules for managing removals.

Results

A Shiny application for visualizing results is available at https://pelabox.univ-lr.fr/

pelagis/DART/. Results will be detailed and discussed during the talk. The main one is
shown on Figure 2.

Conclusion

Future research directions will close the talk. This research has been published in PeerJ
(Ouzoulias et al. 2024).
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