Quantifying the Uncertainty of Electric Vehicle Charging with Probabilistic Load Forecasting

Yvenn Amara-Ouali 1 & Bachir Hamrouche 2 Guillaume Principato 3 & Yannig Goude 4

1 University Paris-Saclay, LMO, France, yvenn.amara-ouali@universite-paris-saclay.fr
2 EDF R&D, OSIRIS, Palaiseau, France, bachir.hamrouche@edf.fr
3 University Paris-Saclay, LMO, France, guillaume.principato@universite-paris-saclay.fr
4 EDF R&D, OSIRIS, Palaiseau, France, France et yannig.goude@edf.fr

Abstract. This paper explores ways of quantifying the uncertainty associated with the increasing use of electric vehicles (EVs) in the management of electricity networks. With a focus on load forecasting solutions, the study extends a benchmark on day-ahead load forecasting to include probabilistic forecasting algorithms. Two approaches are considered: a direct approach that provides quantile forecasts using GAMlss models, and a bottom-up approach that predicts individual charging session characteristics before reconstructing the load curve and calculating empirical quantiles. The proposed methods are evaluated using metrics such as Pinball Loss and RMSE, demonstrating comparable performance between the direct and bottom-up approaches. The results, based on real data from Palo Alto charging sessions, suggest potential advantages of the bottom-up approach for high quantiles.

Keywords. Quantile forecasts, Monte-Carlo Simulation, Bottom-up approach, Generalised Additive Models, Gaussian Mixtures, Conformal Prediction, Smart Grids
1 Industrial Context

A key lever for reducing greenhouse gas emissions in the transport sector is the large-scale deployment of electrical vehicles (EVs). This has led to many governments implementing strong pro-EV policies, resulting in an increase in the number of electrical vehicles in global markets. The arrival of these vehicles creates challenges in the management of the electrical network while also bringing opportunities in terms of grid flexibility. Indeed, these vehicles will become important assets for managing electricity demand whose charging can be automatically postponed when constraints are high or even used as storing batteries to reinject power when demand is high. All these operations of load optimisation are referred to as smart charging. One of the key elements of an efficient smart charging solution is a strong understanding of charging behaviours which requires the development of efficient forecasting algorithms in order to predict them.

2 Related Work

This work builds on a previous set of papers [1] [2] which focused on benchmarking day-ahead load and occupancy forecasting solutions, mainly using algorithms that return point estimates corresponding to the mean of the distribution of interest. The previous benchmark examined two sets of methods: direct approaches that would predict the aggregate load curve at the station level, and bottom-up approaches that would model the set of individual behaviours before aggregating them to obtain the predicted curve at the station level. The bottom-up approaches, although more complex to estimate, offer more flexibility for the deployment of smart charging solutions. In this work, we propose to extend this benchmark to probabilistic forecasting algorithms by exploring probabilistic variations. The use of probabilistic forecasts is becoming increasingly important for the efficient operation of electricity systems, as highlighted in the last two Global Energy Forecasting Competitions [3][4]. Recently, several approaches for estimating probabilistic forecasts related to energy demand have been proposed in [5] and [6]. The need for probabilistic forecasts is particularly important in the management of electric vehicles, as the optimisation of charging loads often requires a good quantification of the certainty around the forecasts in order to manage the best and worst case scenarios. [7] proposes an approach to quantify the uncertainty of parking duration forecasts in EV management.

3 Methods

Two approaches have been used to address the probabilistic forecasting task. A direct approach which provides quantile forecasts with a GAMlss (see Section 3.1) model trained directly on the load curve. A bottom-up approach (see Section 3.2) which predicts individual charging session characteristics to then reconstruct the load curve. With both approaches, 9 quantile forecasts are provided from 0.1 to 0.9 with 0.1 increments.
3.1 Direct Approach

Generalised Additive Models for location scale and shape (GAMLss) are an extension of GAM [10] which enables the fine modelling multiple parameters of a single distribution. In this study, GAMLss are used to model both the mean and variance of the load at charging points over time.

4 Bottom-Up Approach

Bottom-up approaches predict the characteristics of individual charging sessions occurring over time. In particular, three variables are required to reconstruct the load curve of an ensemble of charging stations in an uncontrolled charging environment: \((a_i, d_i, e_i)\) the arrival time, charging duration and energy demand of a charging session \(i\). These three variables can be modelled using various statistical techniques. It was shown in [2] and [3] that mixture models are an adequate choice of method to represent individual charging sessions. Assuming we can predict the number of charging sessions \(N\) occurring each day with a time series model, we can sample from the mixture model distribution \(N\) times to obtain a prediction for a particular day. In this work, a SARIMA model is used as the predictor for the number of daily charging sessions. A Monte-Carlo simulation is executed to obtain empirical quantiles of the SARIMA model. For each of these 9 forecasted quantiles, another Monte-Carlo simulation is led on the mixture models to reconstruct a total of 10000 load curves from which empirical quantiles are recovered for each instant.

4.1 Metrics

Three types of metrics have been used to evaluate quantile forecast performances. First the pinball loss defined as follows:

\[
L^\text{pinball}_\tau(y_{\text{obs}}, (\hat{y}_\tau^i)) = \frac{1}{N} \sum_{i=1}^{N} \rho_\tau(y_{\text{obs}}^i - (\hat{y}_\tau^i))
\]

\[
\rho_\tau(u) = \begin{cases}
\tau \cdot u, & \text{if } u < 0 \\
(1 - \tau) \cdot u, & \text{if } u \geq 0
\end{cases}
\]

It penalises the model for deviations between the true target values \(y_{\text{obs}}\) and the predicted quantiles \((y_\tau)\). The degree of penalty depends on the chosen quantile level \(\tau\). Another metric which can be used for assessing the accuracy of quantile forecasts can be defined as follows:

Equation (3) provides an estimate of the probability of the observed value falling below the predicted quantile. Essentially, if \(L^\text{emp}_\tau(y_{\text{obs}}, (y_\tau)) = \tau\) the quantile forecast is optimal on the testing sample.
\[L^\text{emp}_\tau(y_{\text{obs}}, (\hat{y}_\tau)) = \frac{1}{N} \sum_{i=1}^{N} I(y_{\text{obs}}^i \leq (\hat{y}_\tau^i)) \] (3)

A slightly modified version of the metric defined in equation (3) can be written as follows using block-bootstrap sampling:

\[L^\text{rmse}_\tau(y_{\text{obs}}, (\hat{y}_\tau)) = \sqrt{\frac{1}{B} \sum_{b=1}^{B} \left(\tau - \frac{1}{N} \sum_{i=1}^{N} I(y_{\text{obs}}^i \leq (\hat{y}_\tau^i)) \right)^2} \] (4)

With B=1000 the number of bootstrap samples of size N.

5 Results and Discussion

Experiments were led on the city of Palo Alto (California, USA) dataset that gathers real data from charging sessions occurring. This data has been explored in [1]. Figure 1 shows the average daily quantile forecasts for both approaches. It seems that both approaches capture the general shape of the observed curve in black with a peak demand in the middle of the day and another one in the evening. Both models seem to slightly underestimate high quantiles. This is confirmed by Figure 2 where it can be observed that \(L^\text{emp}_\tau \leq \tau \) for all quantiles except 0.1. Figure 2 also shows that both the direct approach and the bottom-up approaches yield similar performances also confirmed by Table 1. It also indicated that the bottom-up approach could be more performant for high quantiles and particularly quantile 0.9 which is more performant for the bottom-up approach across all metrics considered.

<table>
<thead>
<tr>
<th>Quantile</th>
<th>Pinball Loss</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GAMlss</td>
<td>Bottom-Up</td>
</tr>
<tr>
<td>0.1</td>
<td>2.59</td>
<td>2.65</td>
</tr>
<tr>
<td>0.2</td>
<td>4.25</td>
<td>4.36</td>
</tr>
<tr>
<td>0.3</td>
<td>5.36</td>
<td>5.53</td>
</tr>
<tr>
<td>0.4</td>
<td>6.02</td>
<td>6.27</td>
</tr>
<tr>
<td>0.5</td>
<td>6.31</td>
<td>6.60</td>
</tr>
<tr>
<td>0.6</td>
<td>6.22</td>
<td>6.48</td>
</tr>
<tr>
<td>0.7</td>
<td>5.72</td>
<td>5.92</td>
</tr>
<tr>
<td>0.8</td>
<td>4.74</td>
<td>4.82</td>
</tr>
<tr>
<td>0.9</td>
<td>3.13</td>
<td>3.05</td>
</tr>
</tbody>
</table>
Figure 1: At the top are the GAMlss averaged quantile forecasts for each quantile levels and at the bottom the same chart for the bottom-up approach. In black is the average daily load curve over the test period.
Figure 2: Boxplots of the block-bootstrap performances calculated with L_r^{cmp} defined in equation (3)
Acknowledgements

The results presented in this abstract will be further detailed and complemented with conformal predictions after review and upon acceptance.

References

