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Topology is…

• the mathematics of shape;
• the mathematics of connectivity;
• the mathematics of emergence of global structure from local 

constraints.

D. Benbennick, CC BY-SA 3.0



Application to Data Science

The shape of a data set, 
described by a topological signature 
encoding its multi-scale structure, 

can reveal important relations among the data points, 
with the help of  machine learning.

Topological Data Analysis (TDA)



Topological analytical tools

Method Appropriate data types

Mapper Clinical data, metabolomics, genomics, etc. 

Two-tier Mapper Gene expression data, single-cell transcriptomics

Persistent homology Connectivity data, high-dimensional point cloud data

Graph signal processing Connectivity data + “signal”



Mapper



Overview

• (Mostly) unsupervised mutivariate pattern analysis of high-dimensional 
data, retains more information than PCA
• Produces a compressed visual representation of the data, providing a 

strong indication of where to look for meaningful clustering and encoding 
relations between clusters
• Numerous remarkably successful applications
• Input:

• Data set X equipped with notion of “distance” between points
• Real-valued “measurements” on X
• Decomposition of the real line into overlapping subsets
• Choice of clustering algorithm



Mapper output: synthetic data

Masters thesis, F. Palma, 2018



The Normal-like (blue) group of tumors (15 tumors) con-
stitutes 5% of the cohort. The low value of the filter function
indicates little activity different from normal.
The c-MYB+ (red) group of tumors (22 tumors) constitutes

7.5% of the cohort, or the more compact subset (outliers re-
moved 14 tumors) 5% of ER+ tumors. The high value of the
filter function identifies these tumors as among the most distinct
from normal tissue, showing extremely high activity in some gene
groups (ER+, c-MYB+) and low activity in others (innate im-
mune genes), relative to normal tissue. This extreme deviation
from normal molecular profiles, together with the biology of the
overly active gene groups, and the excellent overall survival
suggests that these tumors have a mechanism to respond in
a protective way, antagonizing the presence of neoplastic tissue.
In the next paragraphs we give evidence for the following two
points: (i) c-MYB+ breast cancer warrants being identified as
a breast cancer group because it shows uniformity in molecular
signature and clinical and survival properties, and because it is
validated in other cancer data sets; and (ii) c-MYB+ breast
cancer is a unique group that does not fit into previously iden-
tified breast cancer types.

2.1. Survival Analysis. Survival analysis was performed on each of
the two groups of ER+ tumors: the blue Normal-like group and
the red group that shows altered transcriptional activity in a large
number of genes compared with the normal tissue, c-MYB+ red
group. Each group showed 100% overall survival, with no re-
currence and no death from disease. Median time to follow-up
was 10 y for the Normal-like group and 8.5 y for the c-MYB+

tumors. It is important to note that survival information was not
incorporated in the DSGA decomposition or the Mapper pro-
gression. We simply tested survival of groups of tumors that our
PAD analysis found to stand out, purely on the basis of our two-
step analysis: (i) DSGA, highlighting the distinction between
normal and disease data, and (ii) Mapper, identifying subtle
aspects in the shape of the data.

2.2. Comparison with Cluster Analysis Applied to the Same Data
Matrix. The Normal-like tumor group (blue) is often observed

through this type of analysis. However, the other group, c-MYB+

tumor group, was scattered across several clusters, as seen in Fig.
4. Thus, unlike PAD, cluster analysis was unable to identify this
new group of tumors. This shows that the appearance of the new
group of tumors was not due to the way data were transformed
via DSGA nor to the specific method used for thresholding
genes, but rather to the ability of PAD to identify subtle shape
characteristics of the data set. Cluster analysis scattered the
tumors in the ER+ tumor progression and even the very tight c-
MYB+ tumor group. That the tumors in this group (22 in all, 14
without outliers) ought indeed to appear together is seen below,
in sections 2.4–2.6, which show that the molecular signatures of
these tumors are indeed very similar to one another and signif-
icantly distinct from other tumors.

2.3. Comparison with Molecular Subtype Classification. The 22
tumors in the c-MYB+ group were analyzed for molecular sub-
type (Basal, ERBB2, Luminal A, Luminal B, and Normal-like) (7)
as previously assigned (6). Of the 22 tumors, only six had cor-
relation >0.1 to one of the five centroids, the rest having been
left unclassified. Five were classified as Luminal A and one as
Normal-like. The rest of the c-MYB+ tumors were partially
classified by the centroid they were closest to as follows: seven
Normal-Like, six Luminal A, and three Luminal B. These
assignments to subtype have changed (9) to be two Normal-Like,
two Luminal B, and 18 Luminal A. This new assignment changes
the subtype of 77% of tumors (17 of the 22 tumors have different
assignment from their original one).

2.4. Prediction Analysis of Microarrays (PAM). PAM (10) was per-
formed on DSGA-transformed data, using all genes, before
thresholding (step 1 only). We wanted to investigate whether the
two tumor groups, c-MYB+ and Normal-like, are good candidates
for being molecular subtypes as far as their gene expression data
were concerned. Using PAM, we wanted to determine whether
they are (i) distinct from normal tissue, (ii) distinct from each
other, and (iii) uniform within each group of tumors. Thus, we
tested how successful PAM was in finding predictor variables for
distinguishing these groups. The distinctions had extremely good
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Fig. 3. PAD analysis of the NKI data. The output has three progression arms, because tumors (data points) are ordered by the magnitude of deviation from
normal (the HSM). Each bin is colored by the mean of the filter map on the points. Blue bins contain tumors whose total deviation from HSM is small (normal
and Normal-like tumors). Red bins contain tumors whose deviation from HSM is large. The image of f was subdivided into 15 intervals with 80% overlap. All
bins are seen (outliers included). Regions of sparse data show branching. Several bins are disconnected from the main graph. The ER− arm consists mostly of
Basal tumors. The c-MYB+ group was chosen within the ER arm as the tightest subset, between the two sparse regions.

7268 | www.pnas.org/cgi/doi/10.1073/pnas.1102826108 Nicolau et al.

Mapper output: gene expression data

Levine, et al. PNAS 2011.



Mapper output: fMRI data

D. Romano et al, Human Brain Mapping 35:4904-4915 (2014) 



Fournier, Scolamiero, et al., J Mol Psych, 2021.

Mapper output: clinical profile data



Lee et al., Nature Communications 2017
Lee et al., J Chem Thy Comput 2018



Persistent homology



The basic persistence workflow

Data Point cloud

Key notion: Filtration 



Step 1: Data to Point Cloud

L. Munch, 2019.



Step 2: Point cloud to nested complexes 

L. Munch, 2019.
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L. Munch, 2019.



Step 3: Nested complexes to barcode

Otter et al., arXiv, 2016.



Barcodes vs persistence diagrams (PD)
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Stability

• The set of barcodes/persistence diagrams can be equipped with a 
variety of earthmover-type distances: the Wasserstein distances of Lp-
type and the bottleneck distance of L∞ -type.

• Most reasonable known instantiations of the TDA pipeline are 
Lipschitz continuous with respect to Hausdorff distance on point 
clouds and bottleneck distance on persistence diagrams.



Practicalities

• There are extensive libraries of software, mostly open source, for TDA 
computations (e.g., GUDHI, Ripser, Flagser, Giotto-TDA,…).

• There exist “inverse analysis” tools for interpreting results of TDA 
computations (e.g., work of Hiraoka et al.).



From one to many parameters

• In real data, there are often several parameters along which it would 
be natural to filter (e.g., some notion of density or time).
• Generalization from one to many parameters poses serious problems, 

for reasons of both theory and implementation: in general, there is 
no analogue of barcodes or persistence diagrams.
• Common approaches for two parameters
• Restrict to lines in the plane determined by the two parameters: fibered bar 

code.
• Focus on decompositions into blocks (instead of bars) when possible.



Static TDA input to ML



Strategies for vectorization/featurization

• Problem: Cannot compute statistics in the space of barcodes or the 
space of persistence diagrams.
• Solution: 
• Define a Lipschitz-continuous mapping from the space of 

barcodes/persistence diagrams to a vector space 𝒱 equipped with an inner 
product.
• Compute statistics in 𝒱!
• Two main types:

• Embeddings into finite-dimensional Euclidean spaces
• Kernel methods: defining generalized scalar product on PD, i.e., see PD as elements of a 

Hilbert space

Few trainable parameters

Expensive



Cavities

By Fashionslide at English Wikipedia, CC BY-SA 4.0



Betti curves
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Nested complex to Betti curve

Bardin, et al., Network Neuroscience, 2019.



Extracting numerical features

Bardin, et al., Network Neuroscience, 2019.



Persistence landscapes

• Barcodes also give rise to persistence landscapes.

• The L2-landscape distance between barcodes B and B’ with 
associated landscapes 𝛌 and 𝛌’:

Bubenik, JMLR 2015
Dlotko & Bubenik, J Symbolic Comp 2017



Persistence curves

Simultaneous generalization of 
Betti curves and persistence
landscapes. Robust to input noise, 
efficient to compute, interpretable, 
and allowing weighting of relative 
importance of different regions in 
the PD.

Chung and Lawson, arXiv, 2019
For each t, compute T({ 𝜓(b,d,t) | b ≤ t, d > t}).



Persistence images

• Smooth the PD: replace each point by a Gaussian kernel, then sum
• Discretize

(Image from Kanari, et al., Neuroinformatics, 2018.) Adams et al., JMLR 2017



ML methods applied to vectorized TDA

• Decision tree
• Random forest
• Support Vector Machine
• CNN
• GNN

Also possible to integrate a TDA layer into an ML model!



Applications



Classification of neuron morphologies

Kanari et al., Neuroinformatics 2017
Kanari et al., Cerebral Cortex 2019

Idea: Starting at the leaves and descending
recursively to the root, decompose the tree 
into branches, while respecting the Elder Rule, 
i.e., at any bifurcation, the elder (longer) branch
survives and the younger branch is broken off. 

Integrate the topology of the tree and the
geometry of its embedding in space into a 
surprisingly powerful global descriptor.
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Classification of neuron morphologies

Kanari et al., Cerebral Cortex 2017



Classification of microglia

Colombo, et al., Nature Neuroscience, 2022.



Classification of microglia

Colombo, et al., Nature Neuroscience, 2022.



Sexual dichotomy in larval fruitflies

Jiao et al, eLife, 2022



Classification of neural dynamics

• For a range of activity parameters, associate to an active Brunel network a 
weighted graph, to which we apply tools of persistent homology.
• Extract simple topological features of each  dynamic regime.
• Use these to train a (highly accurate!) classifier.

Bardin, et al., Network Neuroscience, 2019.



Classification of neural dynamics

Automated classification of network dynamics
• For a range of activity parameters, associate to an active Brunel network a 

weighted graph, to which we apply tools of persistent homology.
• Extract simple topological features of each  dynamic regime.
• Use these to train a (highly accurate!) classifier.

Bardin, et al., Network Neuroscience, 2019.



Classification of nanoporous crystalline 
materials

Lee et al., Nature Communications 2017
Lee et al., J Chem Thy Comput 2018
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Classification of nanoporous crystalline 
materials

Lee et al., Nature Communications 2017
Lee et al., J Chem Thy Comput 2018



Detection of gene cascades in single-cell data

• Idea: Generate biological hypotheses about closed processes in 
single-cell RNA seq data using topology and geometry

Maggs, Nguyen, Youssef, in progress
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Members of the Laboratoire de
Topologie et Neurosciences

Merci !

Thank you to our funding  agencies
• SNSF
• Innosuisse
• Blue Brain Project


