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What is topology?
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Topology is...

* the mathematics of shape;







Topology is...

* the mathematics of shape;
* the mathematics of connectivity;

* the mathematics of emergence of global structure from local
constraints.

D. Benbennick, CC BY-SA 3.0



Application to Data Science

The shape of a data set,
described by a topological signature
encoding its multi-scale structure,
can reveal important relations among the data points,
with the help of machine learning.

Topological Data Analysis (TDA)



Topological analytical tools

Mapper Clinical data, metabolomics, genomics, etc.

Two-tier Mapper Gene expression data, single-cell transcriptomics

Persistent homology Connectivity data, high-dimensional point cloud data

III

Graph signal processing Connectivity data + “signa




Mapper



Overview

e (Mostly) unsupervised mutivariate pattern analysis of high-dimensional
data, retains more information than PCA

* Produces a compressed visual representation of the data, providing a
strong indication of where to look for meaningful clustering and encoding
relations between clusters

 Numerous remarkably successful applications

* |Input:
* Data set X equipped with notion of “distance” between points
e Real-valued “measurements” on X
 Decomposition of the real line into overlapping subsets
* Choice of clustering algorithm



Mapper output: synthetic data

Masters thesis, F. Palma, 2018



Mapper output: gene expression data
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D. Romano et al, Human Brain Mapping 35:4904-4915 (2014)
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Lee et al., Nature Communications 2017
Lee et al., J Chem Thy Comput 2018




Persistent homology



The basic persistence workflow
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Step 1: Data to Point Cloud

L. Munch, 2019.



Step 2: Point cloud to nested complexes

Radius » = 0.3

L. Munch, 2019.



Step 2: Point cloud to nested complexes

Radiusr = 0.5

L. Munch, 2019.



Step 2: Point cloud to nested complexes

Radius r = 0.7

L. Munch, 2019.



Step 2: Point cloud to nested complexes

Radius r = 0.9

L. Munch, 2019.



Step 2: Point cloud to nested complexes

Radiusr = 1.1

L. Munch, 2019.



Step 2: Point cloud to nested complexes

Radiusr = 1.5

L. Munch, 2019.



Step 2: Point cloud to nested complexes

Radiusr = 3

L. Munch, 2019.



Step 3: Nested complexes to barcode

Bo(K1) =3
dl(l\'l) = ()

Dimension 0 Dimension 1

filtration step filtration step

Otter et al., arXiv, 2016.



Barcodes vs persistence diagrams (PD)




Stability

* The set of barcodes/persistence diagrams can be equipped with a
variety of earthmover-type distances: the Wasserstein distances of L,-
type and the bottleneck distance of L., -type.

* Most reasonable known instantiations of the TDA pipeline are
Lipschitz continuous with respect to Hausdorff distance on point
clouds and bottleneck distance on persistence diagrams.



Practicalities

* There are extensive libraries of software, mostly open source, for TDA
computations (e.g., GUDHI, Ripser, Flagser, Giotto-TDA,...).

* There exist “inverse analysis” tools for interpreting results of TDA
computations (e.g., work of Hiraoka et al.).



From one to many parameters

* In real data, there are often several parameters along which it would
be natural to filter (e.g., some notion of density or time).

* Generalization from one to many parameters poses serious problemes,
for reasons of both theory and implementation: in general, there is
no analogue of barcodes or persistence diagrams.

 Common approaches for two parameters

e Restrict to lines in the plane determined by the two parameters: fibered bar
code.

e Focus on decompositions into blocks (instead of bars) when possible.



Static TDA input to ML



Strategies for vectorization/featurization

* Problem: Cannot compute statistics in the space of barcodes or the
space of persistence diagrams.

e Solution:

e Define a Lipschitz-continuous mapping from the space of
barcodes/persistence diagrams to a vector space V equipped with an inner
product.

* Compute statistics in V! .
Few trainable parameters

* Two main types: /

 Embeddings into finite-dimensional Euclidean spaces
* Kernel methods: defining generalized scalar product on PD, i.e., see PD as elements of a

Hilbert space \

Expensive



Cavities

By Fashionslide at English Wikipedia, CC BY-SA 4.0
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Nested complex to Betti curve

.

Threshold 0 Threshold « Threshold B Threshold

Dimension 0

0 « B 0]
Filtration threshold (spike train dissimilarity)

Betti number

Bardin, et al., Network Neuroscience, 2019.



Extracting numerical features

Betti number
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Bardin, et al., Network Neuroscience, 2019.



Persistence landscapes

* Barcodes also give rise to

A={\:R—>RU{oo} |k €N}

* The between barcodes B and B’ with
associated landscapes A and A’:

Bubenik, JIMLR 2015
Dlotko & Bubenik, J Symbolic Comp 2017



Persistence curves

Notation

e B
—
-

Life Entropy sum

Midlife Entropy - - log

Mult. Life Entlop\ = log ="~
k-th Landscape [5] min{t — b,d — t}

For each t, compute

N ER IR

. Robust to input noise,
efficient to compute, interpretable,
and allowing weighting of relative
importance of different regions in
the PD.

Chung and Lawson, arXiv, 2019



Persistence images

* Smooth the PD: replace each point by a Gaussian kernel, then sum
* Discretize
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(Image from Kanari, et al., Neuroinformatics, 2018.)

Adams et al., JIMLR 2017



ML methods applied to vectorized TDA

* Decision tree

 Random forest

e Support Vector Machine
* CNN

* GNN

Also possible to integrate a TDA layer into an ML model!



Applications



Classification of neuron morphologies

Starting at the leaves and descending
recursively to the root, decompose the tree
into branches, while respecting the ,
i.e., at any bifurcation, the elder (longer) branch
survives and the younger branch is broken off.

Integrate the and the
in space into a
surprisingly powerful

Kanari et al., Neuroinformatics 2017
Kanari et al., Cerebral Cortex 2019




Classification of neuron morphologies

500 /

00 600 1200

300

150

0
0

400

200

Kanari et al., Neuroinformatics 2017
Kanari et al., Cerebral Cortex 2019



Classification of neuron morphologies
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Kanari et al., Cerebral Cortex 2019



Classification of neuron morphologies
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Classification of neuron morphologies
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Classification of microglia

Somatosensory cortex (S1)
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Colombo, et al., Nature Neuroscience, 2022.



Classification of microglia

F  Spatial heterogeneity of adult microglia

Olfactory bulb

Somatosensory cortex
Substantia nigra

Colombo, et al., Nature Neuroscience, 2022.



Sexual dichotomy in larval fruitflies
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Jiao et al, eLife, 2022



Classification of neural dynamics

* For a range of activity parameters, associate to an active Brunel network a
, to which we apply tools of

* Extract simple topological features of each dynamic regime.
e Use these to train a (highly accurate!)
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Bardin, et al., Network Neuroscience, 2019.



Classification of neural dynamics

Automated classification of network dynamics

* For a range of activity parameters, associate to an active Brunel network a
, to which we apply tools of

» Extract simple topological features of each dynamic regime.
e Use these to train a (highly accurate!)

Testing set
Training set Ver. 1 Ver. 2 Ver. 3 All ver.
86.67% (180) 91.18% (170) 89.68% (378)

Version 1 100% (28) (
Version 2 97.69% (130) 100% (24) 93.33% (
Version 3 99.23% (130) 99.17% (240) 100% (24
All versions 100% (28) 100% (24) 100% (24

240) 95.18% (394)
) 99.23% (394)
) 100% (76)

Bardin, et al., Network Neuroscience, 2019.



Classification of nanoporous crystalline
materials

Lee et al., Nature Communications 2017
Lee et al., ] Chem Thy Comput 2018



Classification of nanoporous crystalline
materials

Nano-Porous Materials Genome
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Detection of gene cascades in single-cell data

Generate biological hypotheses about closed processes in
single-cell RNA seq data using topology and geometry

Genomic Phase

Space Circle

Closed biological process. —> Continuous circle-valued map.

Maggs, Nguyen, Youssef, in progress




Detection of gene cascades in single-cell data

Generate biological hypotheses about closed processes in
single-cell RNA seq data using topology and geometry

Persistence Diagram

Maggs, Nguyen, Youssef, in progress




Detection of gene cascades in single-cell data

Generate biological hypotheses about closed processes in
single-cell RNA seq data using topology and geometry

Circular

Coordinates
Method first
introduced by De
Silva et. al (2005)

Point Cloud with Circular Coordinate Persistence Diagram

Maggs, Nguyen, Youssef, in progress




Detection of gene cascades in single-cell data

Closed Biological Processes and their Gene Cascades

ﬁne
Gene expression
88 cascade
Gene

Closed biological
process

Homeostasis \/

Stimuli

Expression

Maggs, Nguyen, Youssef, in progress



Detection of gene cascades in single-cell data

Maggs, Nguyen, Youssef, in progress



Detection of gene cascades in single-cell data

Integration
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Maggs, Nguyen, Youssef, in progress
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Detection of gene cascades in single-cell data

Estimate Gene Cascades

Maggs, Nguyen, Youssef, in progress



Detection of gene cascades in single-cell data

Simulated Expression Dynamics Persistence Diagram of PCA Reconstructed Simulation Ground Truth
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Members of the
Topologie et Neurosciences:




