Non-parametric estimation of net survival under dependence between death causes
1 : Sciences Economiques et Sociales de la Santé & Traitement de lÍnformation Médicale
Institut de Recherche pour le Développement, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale
2 : Biostatistique et technologies de l'information et de la communication (BioSTIC) - [Hôpital de la Timone - APHM]
Assistance Publique - Hôpitaux de Marseille, Hôpital de la Timone [CHU - APHM]
Relative survival analysis deals with a competing risks survival model where the cause of death is unknown. This lack of information occurs regularly in population-based cancer studies. Non-parametric estimation of the net survival is possible through the Pohar Perme estimator, taking other causes of mortality into account. Derived similarly to Kaplan-Meier, it nevertheless relies on untestable independence assumptions. We propose here to relax these assumptions and provide a generalized estimator that works for other dependence structures, by leveraging the underlying counting process and martingales. Our approach provides a new perspective on the Pohar Perme estimator and the acceptability of this assumption. We showcase the difference between the two estimators on population-based colorectal cancer registry, and discuss potential extensions of the methodology.
- Poster