Modeling moderate and extreme urban rainfall at high spatio-temporal resolution
Chloé Serre-Combe  1, 2, *@  , Nicolas Meyer  1, 2@  , Thomas Opitz  3@  , Gwladys Toulemonde  1, 2@  
1 : Institut Montpelliérain Alexander Grothendieck
Centre National de la Recherche Scientifique, Université de Montpellier
2 : Littoral, Environment: MOdels and Numerics
Inria Sophia Antipolis - Méditerranée, Institut Montpelliérain Alexander Grothendieck, Hydrosciences Montpellier, Inria Sophia Antipolis - Méditerranée
3 : Biostatistique et Processus Spatiaux
Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement : UR0546
* : Auteur correspondant

Precipitation modeling is of great interest for flood risk analysis. We propose to model the distribution of urban precipitation measured at high spatial and temporal resolution by the Montpellier Urban Observatory rain gauge network over four years of measurements. We combine them with radar reanalysis data to extend our analysis to a longer period with less fine resolution. For our modeling approach, we simultaneously consider moderate and intense rainfall by using the Extended Generalised Pareto Distribution (EGPD) to avoid explicit threshold selection, often tricky in extreme statistics, and to reduce the complexity of parameter estimation. We also model the spatio-temporal dependence by incorporating advection through a spatio-temporal Brown-Resnick process. We use indices of extremal autocorrelation, to show its variability between locations in relation to their spatial distances and to the temporality of the measurements. We will highlight the importance of including advection by comparing it with a simpler separable model.



  • Poster
Personnes connectées : 2 Vie privée
Chargement...